Emerging Infections

- Discussed today
 - Antimicrobial resistance
 - Zika update

- Not discussed today
 - Measles, pertussis, novel influenza, Ebola, MERS, Lyme, cholera, and many more...
recently traveled internationally or had close contact with someone who recently traveled internationally and was ill,

AND YOU HAVE

fever, cough, trouble breathing, rash, vomiting or diarrhea,

PLEASE TELL STAFF IMMEDIATELY!
Contributing Factors

- **International travel and commerce** (movement of goods and people)
- **Ecological changes** (economic development, land use; agriculture; dams; deforestation and reforestation; climate change)
- **Human demographic factors** (population growth, migration, war and conflict; sexual behavior, IV drug use)

Institute of Medicine Report, 1992; Stephen Morse, EID Vol. 1, No. 1, Jan-March 1995
Contributing Factors

- Technology and industry (mass food production, globalization of food supply, organ transplants)
- Microbial adaptation, evolution, e.g., genetic drift and genetic shift in influenza A, selective (antimicrobial) pressure
- Breakdown in public health measures (conflict, bankruptcy, premature program cuts, inadequate sanitation / inadequate sterile environment)

Institute of Medicine Report, 1992; Stephen Morse, EID Vol. 1, No. 1, Jan-March 1995
Antimicrobial Resistance
Forward to the Past
The Life-Saving Benefits of Antibiotic Use

- Once deadly infectious diseases treatable, substantially reducing deaths compared to the pre-antibiotic era
- Important adjunct to modern medical advances
 - Surgeries
 - Transplants
 - Cancer therapies

Lauri Hicks, CDC: “Call to Action: Improving Antibiotic Use”
The End of the Antibiotic Era?

- No new types of antibiotics developed in over 10 years
- More toxic antibiotics being used to treat common infections
- Must treat antibiotics as precious and finite resource

Lauri Hicks, CDC: “Call to Action: Improving Antibiotic Use”
Volume of Antibiotic Prescriptions, 2010

819 oral antibiotic prescriptions per 1,000 persons in North Carolina

Unintended Consequences of Antibiotic Use

- Antibiotic resistance
- Increased health-care costs
- Adverse drug events
 - Hypersensitivity/allergy
 - Antibiotic associated diarrhea/colitis
 - Other side effects
 - *Clostridium difficile* infection

Ohl CA, Luther VP. J. Hosp. Med. 2011;6:S4
Unintended Consequences of Antibiotic Use: Antibiotic Resistance

Estimated minimum number of illnesses and deaths caused annually by antibiotic resistance*:

At least 2,049,442 illnesses, 23,000 deaths

*bacteria and fungus included in this report

Estimated cost of $30 billion annually (range $20-$35 billion, 2008 dollars)

Lauri Hicks, CDC: “Call to Action: Improving Antibiotic Use”
Unintended Consequences of Antibiotic Use: Antibiotic Resistance

How Antibiotic Resistance Happens

1. Lots of germs. A few are drug resistant.

2. Antibiotics kill bacteria causing the illness, as well as good bacteria protecting the body from infection.

3. The drug-resistant bacteria are now allowed to grow and take over.

4. Some bacteria give their drug-resistance to other bacteria, causing more problems.

Fluoroquinolone Use and Resistance in ICUs, 1993–2000

Neuhauser et al. JAMA. 2003;289(7):885-888
Carbapenem-Resistant Enterobacteriaceae (CRE)

- Resistant to all or nearly all antibiotics

- *Klebsiella pneumoniae* carbapenemase (KPC) reported in 2001 from NC isolate
 - Plasmid-mediated
 - Confers resistance to all β-lactams/carbapenems
 - Easily transferred to nonresistant bacteria

CRE in the United States

Geographical Distribution of *Klebsiella pneumonia* carbapenemase (KPC) Infections

- States with KPC producing organisms

2001

2012

Proportion of NC Hospitals Identifying CRE at Least Once per Year

N.C. Division of Public Health, unpublished data
Colistin Resistance in China

- Older, toxic antibiotic brought back as last resort for treatment of CRE
- Resistance rarely reported before 2015
- Plasmid-mediated resistance first reported November 2015 from China, found in
 - 15% of raw meat samples
 - 21% pigs
 - Clinical samples from inpatient infections
Colistin Resistance in China

- “Progression... to pan-drug resistance is inevitable and will ultimately become global”

Liu et al. Lancet Infectious Diseases. Published online November 18, 2015
Inappropriate Antibiotic Use: Adults

- Acute respiratory infection is most common reason adults receive an antibiotic
- >25% prescriptions for adult outpatients are for conditions for which antibiotics are not needed
 - Even when antibiotics are indicated, the wrong drug is frequently prescribed
- Providers in the South more likely to prescribe for conditions that do not warrant antibiotic use

Antibiotic Prescriptions: Children

- **Good news**

- **Bad news**

Lauri Hicks, CDC: “Call to Action: Improving Antibiotic Use”
CDC. MMWR. 2011;60:1153-6
Drivers of Inappropriate Antibiotic Use

Patient perspective
- Want symptoms resolved quickly
- Want clear explanations, even when there is no “cure”
- May harbor misconceptions about when antibiotics work
- Cycle of expectations – previous experiences influence current behaviors

Clinician perspective
- Perceived patient expectations
- Concern for misdiagnoses and potential negative consequences
- Time pressure
- Cycle of broad-spectrum prescribing – concern for resistance leads to broad-spectrum use

Both increasingly concerned with antibiotic overuse and resistance

The perception that broad-spectrum antibiotics are easier to prescribe drives injudicious antibiotic selection:

“[Broad-spectrum antibiotics] take the thinking out of it for me so that I am not trying to figure out what the organism is and [which] particular antibiotic treats the organism.”

Patient satisfaction drives antibiotic overuse:

“We as doctors are business people. We’re no different than running a shoe store. If somebody comes in and wants black shoes, you don’t sell them white shoes. And if you do, they get upset.”

“…patients in general don’t understand that concept of not taking [an antibiotic] if you don’t need it... [and] if you don’t give it to them, they don’t come back to you.”

Four Core Actions to Prevent Antibiotic Resistance

1. Preventing Infections, Preventing the Spread of Disease
2. Tracking
3. Improving Antibiotic Prescribing and Use, Aka “Stewardship”
4. Developing New Drugs
“Bringing new antibiotics into our current environment is akin to buying a new car because you hit a pot hole, but doing nothing to fix the road”

CDC. “Get Smart for Healthcare: Know When Antibiotics Work”
Antimicrobial Stewardship

- Processes designed to measure and optimize the appropriate use of antimicrobials
 - Achieved by selecting the appropriate agent, dose, duration of therapy and route of administration

Get Smart Campaign

Know When Antibiotics Work
Get Smart Campaign: Goals

1. Improve patient safety through better treatment of infections.
2. Reduce the emergence of antimicrobial resistant pathogens and *Clostridium difficile*.
3. Heighten awareness of the challenges posed by antimicrobial resistance in healthcare and encourage better use of antimicrobials as one solution.
Get Smart NC – Public Outreach

- Media campaign (November – March)

www.ncgetsmart.org
Get Smart: Provider Tools

- Guide for symptomatic treatment
- Symptomatic prescribing pad
- Continuing education opportunities
- Patient education handouts
- Medical school curriculum
- Clinical practice guidelines
Conclusions

- Investigate occurrences of highly-resistant or unusual pathogens
 - VISA/VRSA
 - Potentially CRE, other multidrug-resistant organisms

- Promote antimicrobial stewardship and infection prevention efforts in communities
Get Smart Campaign Resources

- http://www.cdc.gov/getsma...healthcare/

ANTIBIOTIC RESISTANCE: THE GLOBAL THREAT

Super-Resistant Bacteria: Problem Today, Crisis Tomorrow

- In India, **58,000+ babies died in one year** from super-resistant bacterial infections, which are usually passed on from their mothers.
- In the European Union, antibiotic resistance causes **25,000 deaths per year** and **2.5m extra hospital days**.
- In Thailand, antibiotic resistance causes **38,000+ deaths per year** and **3.2m hospital days**.
- In the United States, antibiotic resistance causes **23,000+ deaths per year** and more than **2m illnesses**.
Last year we talked about chikungunya and dengue, what’s next?

- Zika virus
- Is it any reason for concern?
- 1st a quick orientation to mosquito borne viral infections
Neuroinvasive Arboviral Infections

<table>
<thead>
<tr>
<th>Reportable</th>
<th>Vector</th>
<th>Geography</th>
<th>Genus</th>
<th>Reservoir</th>
</tr>
</thead>
<tbody>
<tr>
<td>LaCrosse</td>
<td>Y</td>
<td>Aedes spp</td>
<td>Western NC</td>
<td>Bunyavirus</td>
</tr>
<tr>
<td>EEE</td>
<td>Y</td>
<td>Aedes, Coquillettidia, Culex spp</td>
<td>Piedmont and Coastal NC</td>
<td>Alphavirus</td>
</tr>
<tr>
<td>WNv</td>
<td>Y</td>
<td>Culex, Culiseta spp</td>
<td>Statewide</td>
<td>Flavivirus</td>
</tr>
<tr>
<td>Powassan</td>
<td>Y (as other)</td>
<td>Ixodes spp</td>
<td>Upper Midwest & New England</td>
<td>Flavivirus</td>
</tr>
<tr>
<td>St. Louis</td>
<td>Y (as other)</td>
<td>Culex spp</td>
<td>Ohio-Mississippi River Basin</td>
<td>Flavivirus</td>
</tr>
<tr>
<td>JE</td>
<td>Y (as other)</td>
<td>Culex spp</td>
<td>Eastern Asia</td>
<td>Flavivirus</td>
</tr>
</tbody>
</table>
Other Arboviral Infections

<table>
<thead>
<tr>
<th></th>
<th>Reportable</th>
<th>Vector</th>
<th>Geography</th>
<th>Genus</th>
<th>Reservoir</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dengue</td>
<td>Y</td>
<td>Aedes aegypti & albopictus</td>
<td>Worldwide</td>
<td>Flavivirus</td>
<td>People</td>
</tr>
<tr>
<td>Chikungunya</td>
<td>Y</td>
<td>Aedes aegypti & albopictus</td>
<td>Worldwide</td>
<td>Alphavirus</td>
<td>People</td>
</tr>
<tr>
<td>Yellow Fever</td>
<td>Y</td>
<td>Aedes aegypti & albopictus</td>
<td>Tropical Africa, S. America</td>
<td>Flavivirus</td>
<td>People and NHPs</td>
</tr>
<tr>
<td>Zika</td>
<td>N</td>
<td>Aedes aegypti & albopictus</td>
<td>Worldwide</td>
<td>Flavivirus</td>
<td>People and NHPs</td>
</tr>
</tbody>
</table>
Given the increased transmission of Zika virus in the Region of the Americas, the Pan American Health Organization/World Health Organization (PAHO/WHO) recommends that its Member States establish and maintain the capacity to detect and confirm cases of Zika virus infection, prepare their health services for a potential additional burden at all levels of health care, and implement an effective public communications strategy to reduce the mosquitoes that transmit this disease, particularly in areas where this vector is present.
Given the unusual increase in cases of microcephaly in some northeast states of Brazil, the Pan American Health Organization (PAHO) / World Health Organization (WHO) calls upon Member States to remain alert to the occurrence of similar events in their territories and to notify its occurrence through the channels established under the International Health Regulations (IHR).
Epidemiological Alert

Neurological syndrome, congenital malformations, and Zika virus infection. Implications for public health in the Americas

1 December 2015

Given the increase of congenital anomalies, Guillain-Barré syndrome, and other neurological and autoimmune syndromes in areas where Zika virus is circulating and their possible relation to the virus, the Pan American Health Organization / World Health Organization (PAHO/WHO) recommends its Member States establish and maintain the capacity to detect and confirm Zika virus cases, prepare healthcare facilities for the possible increase in demand at all healthcare levels and specialized care for neurological syndromes, and to strengthen antenatal care. In addition, Member States should continue efforts to reduce the presence of mosquito vectors through an effective vector control strategy and public communication.
ZIKV is an emerging arbovirus that was first isolated from a Rhesus monkey in Uganda, in 1947. It is related to DENV and has a similar epidemiology and transmission cycle in urban environments. Patients develop a mild dengue-like syndrome, including fever, headache, rash, arthralgia and conjunctivitis. This clinical similarity with other, more commonly diagnosed arboviral infections such as chikungunya and dengue might delay the diagnosis and/or lead to underestimation of ZIKV infections.
Where did Zika come from?

Zika Virus in Gabon (Central Africa) – 2007: A New Threat from *Aedes albopictus*?

Background: Chikungunya and dengue viruses emerged in Gabon in 2007, with large outbreaks primarily affecting the capital Libreville and several northern towns. Both viruses subsequently spread to the south-east of the country, with new outbreaks occurring in 2010. The mosquito species *Aedes albopictus*, that was known as a secondary vector for both viruses, recently invaded the country and was the primary vector involved in the Gabonese outbreaks. We conducted a retrospective study of human sera and mosquitoes collected in Gabon from 2007 to 2010, in order to identify other circulating arboviruses.

Conclusions/Significance: We provide the first direct evidence of human ZIKV infections in Gabon, and its first occurrence in the Asian tiger mosquito, *Aedes albopictus*. These data reveal an unusual natural life cycle for this virus, occurring in an urban environment, and potentially representing a new emerging threat due to this novel association with a highly invasive vector whose geographic range is still expanding across the globe.
Where did Zika come from?

Duffy, et. al. Zika Virus Outbreak on Yap Island, Federated States of Micronesia NEJM 360;24 nejm.org june 11, 2009

BACKGROUND

In 2007, physicians on Yap Island reported an outbreak of illness characterized by rash, conjunctivitis, and arthralgia. Although serum from some patients had IgM antibody against dengue virus, the illness seemed clinically distinct from previously detected dengue. Subsequent testing with the use of consensus primers detected Zika virus RNA in the serum of the patients but no dengue virus or other arboviral RNA. No previous outbreaks and only 14 cases of Zika virus disease have been previously documented.

CONCLUSIONS

This outbreak of Zika virus illness in Micronesia represents transmission of Zika virus outside Africa and Asia. Although most patients had mild illness, clinicians and public health officials should be aware of the risk of further expansion of Zika virus transmission.
Van-Mai Cao-Lormeau, Didier Musso.

Expansion of dengue, chikungunya, and Zika viruses in Pacific Island countries and territories between 2007 and 2014.

Lancet, Vol 384 November 1, 2014, 1571-1572
ECDC Rapid Risk Assessment. Microcephaly in Brazil potentially linked to the Zika virus epidemic. 24 November 2015
Zika in the Americas / Microcephaly

Figure 3. States of Brazil with reported confirmed autochthonous cases of ZIKV virus infection 2014–2015, and reported cases of microcephaly in 2015, as of 17 November 2015.

ECDC Rapid Risk Assessment. Microcephaly in Brazil potentially linked to the Zika virus epidemic. 24 November 2015
The adaptation of ZIKV to an urban or peri-urban cycle, involving *Aedes aegypti* and other mosquitoes as vectors and humans as amplification hosts, should be of great concern to public health officials.

With more than half of the world’s human population living in areas infested with these mosquitoes, the potential for major urban epidemics of ZIKV, DENV, CHIKV, yellow fever, epidemic polyarthritis, and other as yet unknown mosquito borne viruses that might emerge, is overwhelming, and underscores the desperate need to develop more effective mosquito control as well as vaccines and drugs.

Musso, et. al. Zika virus: following the path of dengue and chikungunya? Lancet, Vol 386 July 18, 2015, p. 243-244
What should NC public health do?

- Alert clinicians to the possibility of travel associated cases of Zika (and CHIK, DENV, Malaria, etc.)
- Inform diagnostic steps
- Develop mosquito surveillance and control
Texas Woman Diagnosed With Mosquito-Borne Zika Virus: Development raises concern that health crisis in Brazil is spreading

PAHO/WHO: Zika virus (ZIKV) Surveillance in the Americas: Interim guidance for laboratory detection and diagnosis. 29 June 2015
Chikungunya Virus

Surveillance and Control of *Aedes aegypti* and *Aedes albopictus* in the United States

Intended Audience
Vector control professionals

Objectives
The primary objective of this document is to provide guidance for *Aedes aegypti* and *Aedes albopictus* surveillance and control in response to the risk of introduction of dengue, chikungunya, Zika, and yellow fever viruses in the United States and its territories. This document is intended for state and local public health officials and vector control specialists.
Questions, Comments?